
Cody context
architecture

Whitepaper – June, 2023



Overview
Cody is an AI coding assistant that lives in the editor and the web UI. Cody can find, explain, and write
code, in any major programming language. Using Large Language Models (LLMs) and the code graph,
Cody provides context-aware answers that help devs write features and fix bugs faste›r. An overview of
Codyʼs architecture can be found here.

Context awareness is key to providing the highest quality responses to users. A metaphor we have
used is that a raw LLM is like a booksmart programmer who has read all the manuals but doesnʼt know
a companyʼs codebase. By providing context from a companyʼs codebase along with the LLM prompt,
the LLM can generate an answer that is relevant to that codebase.

The key value proposition of Cody is that if Cody has the best, most relevant context about a
companyʼs codebase then it will be able to provide the best answers. Cody will be able to:
● Answer questions about that codebase
● Generate code that uses the libraries and style of that codebase
● Generate idiomatic tests and documentation
● And, in general, reduce the work developers need to do to go from the answer provided by the

LLM to delivering value in their organization

This document goes into detail on howwe provide this context to an LLM.

How Cody generates a prompt
A large languagemodel (LLM) is a type of machine learning model which takes a natural language
prompt and can generate text in response to the prompt. The LLM does not know specifically about a
userʼs code or what the user is trying to achieve.

This is where Cody comes in. When a user queries Cody, Cody generates a prompt that is specifically
designed to help answer questions about the userʼs code.

The prompt can be divided into three parts:
● Prefix: an optional description of the desired output; these come from predefined “recipes” which

define tasks the LLM can perform
● User input: the information provided by the user
● Context: Additional information that helps the LLM provide a relevant answer

For example, a�er the user clicked on the “Explain high-level” recipe, the resulting prompt might look
like this (the labels on the le� are not part of the actual prompt):

Cody context architecture 1

https://about.sourcegraph.com/whitepaper/how-sourcegraph-ai-platform-powers-cody.pdf
https://about.sourcegraph.com/blog/cheating-is-all-you-need


Recipe
Prefix

Explain the following Go code at a high level. Only include
details that are essential to an overall understanding of what's
happening in the code.

User Input zoekt.QueryToZoektQuery(b.query, b.resultTypes, b.features, typ)

Context [Contents of
sourcegraph/sourcegraph/internal/search/zoekt/query.go]

A prompt like this is sent to the LLM. The information contained in the prompt is the only information
the LLM has beyond its baseline model. Because the LLM lacks information about a userʼs code base,
context makes a big difference.

We can illustrate this with an example. If we send the prompt above to Claudewithout the context, we
get the following result:

When we send the same prompt to Cody, we include context frommultiple files, including
query.go,which implements QueryToZoektQuery. The answer we get is muchmore specific to
Sourcegraph. It notes that Zoekt is Sourcegraphʼs search backend, gives more background context,
and provides muchmore specific details about the code. The LLM underneath is still Claude. The
difference comes from providing the context.

Cody context architecture 2



How Cody selects the right context today
Where does context come from? How do wemake sure it is good?

The quality of the context is critical, even with increasing context window sizes1. For one, with
Enterprise code bases continuing to grow2, even huge context windows are not enough to send
everything. Even in cases where sending everything is feasible, sending excess context can increase
query cost, data egress, and response time. The costs of not being selective can add up. Effective
context selection will continue to be an important part of interacting with LLMs.

Cody gets context by searching for relevant code snippets. It does this in one of two ways: Keyword
Search and Embeddings.

2 See Sourcegraphʼs report on Big Code in the AI Era

1 Such as Anthropicʼs recent introduction of a 100k context window

Cody context architecture 3

https://about.sourcegraph.com/big-code/big-code-in-ai-era
https://www.anthropic.com/index/100k-context-windows


Keyword search
Keyword search is the traditional approach to text search. It splits content into terms and builds a
mapping from terms to documents. At query time, it extracts terms from the query and uses the
mapping to retrieve candidate documents. This is how Google search traditionally worked, so itʼs
pretty powerful.

In the simple non-code example below, the query “Auth” would match both “OAuth” and “Author”
(assuming substrings are supported). It would not match the related statements “SAML” and “OpenID
Connect” which are also common authentication or authorization methods.

A simple example of keyword search

When using a codebase that has not had embeddings generated (see below), Cody may use keyword
search as a fallback, depending on the particular client or extension in use.

Keyword Search Implementation

Want more details? Hereʼs how the Cody VS Code extension uses
local keyword search works when embeddings are not available.

Cody context architecture 4



1. Extract stemmed3 keywords and remove stop words4.
2. Run a tool (ripgrep) over the files in the workspace to

look for files that contain exactly those keywords
○ We exclude files that are not expected to add

relevant context, such as files listed in .gitignore
and binary files

3. Score and rank the results using standard search Term
Frequency and Inverse Document Frequency

4. Add the files with the highest scores as context

Embedding search
Keyword search matches documents based on howmany words they share with the query (perhaps
using synonyms or bigrams such as “New York”). However, the most relevant document may have few
words in common. We want to look at the meaning of words in context, not just their textual form.

We use a technique the NLP community developed, text embedding. Embeddings encode words and
sentences as numeric vectors. These vector representations are designed to capture linguistic content
of text, and can be used to measure the similarity between a query and a document based on
meaning.

This is especially relevant for code. Code o�en uses abbreviations or library names to refer to the same
concept by different names. For example, using embeddings “Auth” would match “OAuth”, “OpenID
Connect”, and “SAML”, which are all common authentication or authorization methods. They should
not match “Authorship” since it is not commonly abbreviated as “Auth”.

4 Stop words are common words which are filtered out to improve relevance.

3 Stemming is the process of mapping a word to itʼs linguistic step. E.g., “days” to “day”

Cody context architecture 5

https://en.wikipedia.org/wiki/Stop_word
https://en.wikipedia.org/wiki/Stemming


A simple example of embedding space.

Embeddings are the preferred method for fetching context. Compared to keyword search, embeddings
search:
● uses all of the code in the specified repositories (not just code in the local workspace)
● matches code based on the meaning of the query (not the exact terms)

Embeddings Search Implementation

Want more details? Hereʼs how embeddings search works under the
hood.

1. Cody sends the query to the configured Sourcegraph instance,
specifying the repos to search over.

2. The Embeddings Serving subsystem finds the nearest match by:
a. using an external Embeddings Generation service to

convert the user query into an embedding vector
b. searching over the embeddings stored in a Vector

Database for the specified repositories for the ones that

Cody context architecture 6



are most similar to the query
3. The Embeddings Serving subsystem returns the matching code

chunks along with information about the files those chunks
came from

The Embeddings Serving subsystem is a custom backend that does
brute force search. It currently scales to around 200million lines of code.

Embeddings search depends on the relevant repositories having already
been converted into embeddings by a batch job.

1. An administrator configures the repositories to be indexed.
2. The Embeddings Indexer requests all files in those repos.
3. Each file is divided into chunks.

a. We exclude files are not expected to add relevant
context, such as files listed in .gitignore and binary files

4. The Embeddings Indexer calls the Embeddings Generation
Service for each chunk.

a. Chunks are embedded using the same embedding
model that will be used for search.

5. The embeddings are loaded into the Vector Database associated
with the Sourcegraph instance.

This process is repeated periodically to create or update embeddings as
code changes. This improves freshness and reduces cost relative to
reindexing all the code for any change.

Currently, we use the OpenAI as the service for generating embeddings.

Cody context architecture 7



Embeddings vs keyword search
Are embeddings really better than keyword search? Since Cody with embeddings searches over whole
repos while Cody with keyword search only searches over the local VS Code workspace, itʼs fair to ask
whether Cody with embeddings is better because of the embeddings or just because it looks at more
code.

We ran an evaluation of embeddings against keyword search using the CodeSearchNet data. Looking
at Normalized Discounted Cumulative Gain (NDCG) over the first 20 returned results, we compared the
performance of:

● Embeddings models:
○ OpenAI
○ all-mpnet-base-v2

● Keyword search
○ ripgrep
○ Elasticsearch

Using OpenAI embeddings as the baseline, we saw the following relative quality:

ripgrep Elasticsearch OpenAI all-mpnet-base-v2

77% 95% 100% 119%

Although a true keyword search engine was able to nearly match the OpenAI embeddings model, the
result from all-mpnet-base-v2 shows that the right embeddings model can outperform keyword
search. Any embeddings model is much better than ripgrep5.

That said, it doesnʼt need to be an “either/or”. Different search methods can be blended, for example,
combining embeddings with keyword search when exact matches are useful.

Improving context
We are continually working to improve context search. Since Codyʼs initial release, we have already
added support for searching over multiple repositories, seamless updating of embeddings, and scaled
the current vector database by 10x. Hereʼs where we are going from here.

5 The advantage of ripgrep is that it is easy to run locally and on demand.

Cody context architecture 8

https://arxiv.org/abs/1909.09436
https://en.wikipedia.org/wiki/Discounted_cumulative_gain#Normalized_DCG


Better embeddings
Today Sourcegraph uses the OpenAI Embeddings API. Our use of this API is stateless. Sourcegraph calls
the OpenAI Embeddings API, generates embeddings for repositories based on the user or companyʼs
configuration, and then stores them in the vector database associated with the relevant Sourcegraph
instance.

This model has been effective for us so far, but it presents some challenges.

Using OpenAI requires that we send a customerʼs whole code base to a third party service provider.
Although we have a 0-retention policy for both LLM and embeddings providers, some customers prefer
not to send their entire code base to an entity they do not have a direct relationship with.

Another challenge is that OpenAI embeddings are large. Each embedding is represented by 1536
floating point numbers, which adds up to a lot of RAM. Using smaller embedding vectors would allow
the Embeddings Serving subsystem to scale to more code with the same amount of RAM. It also allows
records to be scannedmore quickly which makes searches faster.

As the note comparing keyword search and embeddings shows, another challenge with OpenAI
embeddings is that other embeddings models perform better — even though theyʼre smaller.

To solve these problems, we are replacing OpenAI embeddings with a Sourcegraphmanaged
Embeddings API. This API would be a stateless API that is managed by Sourcegraph6. It would generate
embeddings directly; it would not call out to another service7. The managed service would have a
0-retention policy, with the generated embeddings continuing to be stored in the vector database in a
customerʼs Cloudmanaged or self-hosted Sourcegraph instance.

Results so far are promising. Even off the shelf, weʼre seeing smaller models perform up to 20% better
on our tests than the OpenAI embeddings. (Models weʼve evaluated include AllDistilRobertaV1,
AllMPNetBaseV2, E5, AllMiniLML6V2, and SentenceT5.)

Beyond code
Developers answer questions with more than just code. Sometimes the best answer to a userʼs query
is found in a companyʼs knowledge base or ticket system. We plan to add support for these and other
data providers. Because embeddings encodemeaning, we believe they are particularly well suited to
finding commonalities across disparate data sources such as code, documentation, bug reports, logs,
andmore.

7 Wewill temporarily retain the option to use OpenAI for generating embeddings to aid in the transition to a new
model.

6 We do not currently plan to provide self-hosted functionality for generating embeddings.

Cody context architecture 9

https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
https://about.sourcegraph.com/terms/cody-notice


Scaling embeddings
Code bases are getting larger and larger. To handle the needs of large and growing code bases, we
need to be able to handle even larger amounts of code while still quickly providing the best context.
We plan to offer alternatives to our custom built embeddings server to handle even larger code bases.
Systems that support more efficient vector search, on-disk data storage, and horizontal scalability can
scale to ever larger datasets. However, these systems also come with deployment challenges. We want
to make sure our customers have a choice: an easier to deploy model that works well on moderate
code bases or a more complex solution that can scale to even the largest code bases.

Deeper code graph integration
Today, Cody utilizes the power of the code graph to be able to create embeddings for a customerʼs
whole code base. However, we are still treating code largely as text. We are working to push the power
of the code graph even further by using the structure of code to allow better context fetching. For
example, we can take code structure into account when we chunk code for embeddings. We can use
the call graph to fetch context that may not be textually related but is related through usage. For
example, neither embeddings on code text nor keywords are good for answering queries of the type
“Find all call paths between A and B”. The code graphmakes following these relationships easy.

Better keyword search
Embeddings give higher quality results than keyword search. However, keyword search is still a
valuable fallback. Embeddings search requires preprocessing the code base, which can take awhile
andmay not be worthwhile for all repositories, e.g., rarely used repositories. We are working on
utilizing our existing Code Search infrastructure to provide better keyword search in cases where
embeddings are not available.

Cody context architecture 10


