
How Sourcegraphʼs code
AI platform powers Cody

Whitepaper – June, 2023



Cody is an AI coding assistant for developers, answering technical questions, fixing and generating
code with high accuracy, directly in their text editor or wherever theyʼre writing and reading code. It is
built on top of Sourcegraphʼs code AI platform, giving Cody the context and intelligence it needs to
deliver a best-in-class AI assistant experience.

In this document youʼll learn how Cody works and how exactly it makes use of Sourcegraphʼs AI
platform. Through a close look at what goes on under the hood of a typical user interaction with Cody
youʼll learn how the platform gives Cody a unique advantage compared to other coding assistants
today and how that advantage will grow in the future.

Cody & Sourcegraphʼs code AI platform
Cody, like other AI assistants, uses a Large Language Model (LLM) under the hood to answer a userʼs
question. A big challenge when working with LLMs is that they donʼt have access to a userʼs data. Even
though theyʼve been trained on large amounts of data, they donʼt know about a userʼs codebase, their
documentation, the currently open file in their editor, or other things the user might have questions
about.

LLMs are context-free; they know of the world, but they donʼt know the userʼs world. LLMs can, for
example, produce code in multiple programming languages. Through their training theyʼve acquired
the ability to speak languages, but they canʼt speak in the dialect spoken in a userʼs organization. The
problem is that users want them to do exactly that: answer questions about their code, their
organization, the problem they are currently facing.

One solution to that is to give context to the LLM: prepend a userʼs question with relevant information
that might be necessary to answer it. If the user asks “is there a typo in this document?”, the best way
to get the LLM to answer truthfully is to add the document to the interaction.

In fact, different AI assistants already do that in different ways to solve the problem of missing context.
ChatGPT, for example, allows users to paste all the necessary context into the chat window, amassing
more and more context with each message. Most other AI coding assistants look at the file and
directory the user currently has open in their editor and use that.

That is only solving half of the problem, though. The other half is finding the right context to use in a
given interaction. If the userʼs codebase is millions of lines of code or they have 200 files open in their
editor, which ones do you pick when the user asks how to fix a bug?

Cody uses Sourcegraphʼs code AI platform to answer that. It uses the platform to find out which type of
context to add to a given interaction and then again uses the platform to gather that context from all

How Sourcegraphʼs code AI platform powers Cody 1



across a userʼs or organizationʼs complete codebase - no matter how many million lines of code it is
and where theyʼre hosted.

AI platform
Chatbot
Recipes
Auto-complete
Fixups

Code graph:
All your code & data

Language models:
Plug-n-play access to LLMs and
embeddings models

Available in:

Soon available in:

Letʼs take a closer look at an interaction between a user and Cody to see what exactly is meant with
Cody, code AI platform and how they interact.

Interaction between Cody and Sourcegraphʼs code AI
platform
Here is a screenshot of a typical interaction a user might have with Cody inside their editor:

How Sourcegraphʼs code AI platform powers Cody 2



What you can see is that the user asked the following question about the code in the currently open
file:

What does addErrorAsAssistantResponse do?

The user refers to the invocation of addErrorAsAssistantResponse in the editor – implicitly,
without pointing Cody directly at the line.

Codyʼs reply contains two things:

1. A list of files in the userʼs codebase that Cody read.
2. An answer to the question, explaining what the function does.

How Sourcegraphʼs code AI platform powers Cody 3



JavaScript

Itʼs noteworthy that the answer not only explains what addErrorAsAssistantResponse does in the
currently open file, but that it also explains what the function itself does (“It finds the last
interaction…”).

That information is contained in transcript/index.ts, which is in the list of files that Cody read. If
we look at the definition of addErrorAsAssistantResponsewe can see that this is where Cody
got its information from:

public addErrorAsAssistantResponse(errorText: string): void {
const lastInteraction = this.getLastInteraction()
if (!lastInteraction) {

return
}
// If assistant has responsed before, we will add the error message after it
const lastAssistantMessage = lastInteraction.getAssistantMessage().displayText || ''
lastInteraction.setAssistantMessage({

speaker: 'assistant',
text: 'Failed to generate a response due to server error.',
displayText:

lastAssistantMessage + `<div class="cody-chat-error"><span>Request failed:
</span>${errorText}</div>`,

})
}

In other words: Cody gave a high-quality, contextualized answer by taking the userʼs codebase (not just
the currently open file) into account.

How?

How Sourcegraphʼs code AI platform powers Cody 4

https://github.com/sourcegraph/sourcegraph/blob/686a16d5b2580c36aa660200cb50eb32e8bd8022/client/cody-shared/src/chat/transcript/index.ts#L102-L115


Diagram of a typical interaction between user, Cody, code AI platform, LLM, and embeddings provider.

1. Preparation: create embeddings
Before this interaction could take place, a few things had to happen:

1. The userʼs codebase was synced to the code AI platform the user is connected to (either
sourcegraph.com or a custom instance).

2. Embeddings were created for the codebase.

How Sourcegraphʼs code AI platform powers Cody 5

https://docs.google.com/document/d/1QkKd4sf9EJJo5efqtbTaP8sAkmo9iq_LzYQVeDQNvgA/edit#heading=h.oro9lzte46rn


The first step allows the code AI platform to serve the codebase and its code graph to Cody, the second
allows Cody to find the most relevant files to a userʼs query.

The Cody white paper on context contains more information about embeddings, but for the purposes
of this exploration let's gloss over some details and say that embeddings are representations of your
code, effectively turning the code into data that captures context and semantic relationships.

The AI platform creates embeddings by sending a repositoryʼs contents to OpenAIʼs embeddings API,
which, to simplify, takes in a list of text and returns a list of numbers (i.e. the encoding of code in vector
space). These embeddings are then stored in the storage provider configured in the platform (for
example: S3, GCS, or another supported blob store), from which theyʼre retrieved and cached on
demand.

In the future (see Cody & Sourcegraphʼs code AI platform in the future), the code AI platform will be
able to create embeddings without the use of third parties, such as OpenAI.

By creating embeddings for a codebase, Sourcegraphʼs code AI platform allows Cody to find the files
that are most likely to contain answers to a userʼs question (“how do we display timestamps in React
components?”) or clues on how to execute an instruction (“change this code to use our timestamp
component”).

2. Build up local context
With embeddings created and code synced to the code AI platform, Cody is ready to answer the userʼs
question.

Codyʼs first task: gather context to send along with the question to the LLM. To do that, Cody builds up
two types of context:

1. Local context, which is the context in the editor of the user. E.g.: the currently open file or text
selection in the editor.

2. Codebase context, which is context gathered from across a userʼs complete codebase,
achieved by querying the Sourcegraph code AI platform.

(In the future, Cody will be able to gather context from third-party data sources too: a company's
internal wiki, documentation pages, tools, etc.)

Letʼs take a look at the local context first. Here is the relevant code that shows how Cody builds that
up:

How Sourcegraphʼs code AI platform powers Cody 6

https://about.sourcegraph.com/whitepaper/cody-context-architecture.pdf
https://sourcegraph.com/github.com/sourcegraph/sourcegraph@b0da87cde1267d9c195c4806d695c03d99101770/-/blob/client/cody-shared/src/chat/recipes/chat-question.ts


1. It checks whether thereʼs a current text selection in the editor it should include. If so, itʼs
included.

2. If the current chat question (or recipe) requires local context from the editor it adds the
currently open file to the context.

The “if” in point 2 refers to something called “intent detection”, which happens locally (in the userʼs
IDE) for local context. In the future this might be moved to the code AI platform and replaced with a
request, since thereʼs many optimizations to be done that might require more sophisticated access to
data than the environment of the userʼs IDE allows.

3. Build up codebase context, by searching embeddings
In order to determine whether the userʼs current question requires codebase context, Cody sends a
request to the code AI platform that contains the userʼs latest question or instruction. Cody is asking
the platform: is non-local context (meaning: context outside the userʼs editor) required to give a good
reply?

On the platform side, the query is analyzed and, again, run through intent detection. If the query, for
example, refers to a previous message in the conversation (“explain this in more detail”), the intent
detector returns false to signal that codebase-wide context is not required. The assumption here is
that the existing conversation already contains enough context. If the user writes “Hi! Howʼs it going?”
the intent detector also determines that no context is required (yet). On the other hand, if the query
does sound like it requires context, the intent detector returns true..

If Cody gets a true back from the platform, it replies with another request, this time searching the
embeddings that were produced in step 1. That request is another GraphQL request, this time using
the embeddingsSearch query to find code and text (documentation & other text files) files that are
likely to be relevant to the userʼs query.

This also means that Cody doesnʼt require searching through the embeddings if the intent detector
determines that local context is enough to provide an answer – making the interaction faster and more
efficient, since no additional roundtrip is required and less context needs to be sent to the LLM for it to
return a helpful answer.

4. Construct prompt
At this point, Cody has enough context to start preparing its requests to the LLM:

1. Local files and snippets, if the local intent detector signaled they would be useful.
2. Codebase files and snippets, if the platform intent detector signaled they would be useful.

How Sourcegraphʼs code AI platform powers Cody 7



Unset

The next step: construct a prompt for the LLM.

The prompt Cody builds is composed of multiple messages, a dialog between human and
assistant, in which the human (Cody, on behalf of the actual human – the user) shares a preamble,
all the relevant context it gathered in the previous steps, and a question or instruction with the
assistant.

This dialogue between human and assistant is then passed to the LLM, which completes the last
line, adding what the assistant says based on everything that came before. The idea is to give the
LLM a script and ask it: based on everything in this script, what would the next message of the
assistant – you, the LLM – be?

Here is an example prompt, shortened, but still showing the essential pieces: the preamble (”You are
Cody, [...]"), the context (”Use the following text from file [...]”), and, finally, the
last undefined message by assistant, which is the LLMʼs job to fill out:

{speaker: 'human', text: 'You are Cody, an AI-powered coding assistant created by Sourcegraph. [...]'}
{speaker: 'assistant', text: 'Understood. I am Cody, an AI assistant made by Sourcegraph [...]'}
{speaker: 'human', text: 'Use the following text from file `CHANGELOG.md`: [contents of
CHANGELOG.md]'}
{speaker: 'assistant', text: 'Ok.'}
{speaker: 'human', text: 'Use the following text from file `main.go`: [main.go]'}
{speaker: 'assistant', text: 'Ok.'}
[...]
{speaker: 'human', text: '[...] Hey, can you explain what the goEsacpeString function does here?'}
{speaker: 'assistant', text: undefined}

5. Send request to Sourcegraph to talk to LLM
With the prompt ready, itʼs time to send those messages to the LLM. Cody uses the code AI platformʼs
streaming completions1 API for that. From there the messages are forwarded to the configured LLM
model.

Hereʼs what an example request looks like, sent via HTTPS to '/.api/completions/stream' on
the code AI platform:

1 So named because the LLMs “complete” a text given to them.

How Sourcegraphʼs code AI platform powers Cody 8



Unset
{
"messages": [
{
"speaker": "human",
"text": "You are Cody, an AI-powered coding assistant created by Sourcegraph. [...]"

},
// [...]
{
"speaker": "assistant"

}
],
"temperature": 0.2,
"maxTokensToSample": 1000,
"topK": -1,
"topP": -1

}

6. The code AI platform forwards request to LLM
On the code AI platform the request sent by Cody is forwarded to the LLM that was configured by the
site administrator.

As of June 8, 2023, thatʼs either Anthropicʼs Claude or OpenAIʼs ChatGPT. In the future (see Cody &
Sourcegraphʼs code AI platform in the future), different providers may be available, including
self-hosted models.

The LLM replies by streaming its completions back to the code AI platform and from there to Cody.

7. Cody displays LLM reply
Finally, the LLMʼs response is used by Cody.

If Cody is used as a chatbot, as in the pictured interaction above, then the reply is displayed in the chat
window. Since the API is streaming, the user can see the LLM “typing”, with the reply seeming to
appear syllable by syllable.

If Cody is used in another mode (for example: the user invoked a recipe, or used Cody in inline assist
mode, asking it to fix some code), then the LLMʼs response is further processed. For example: a code
snippet thatʼs possibly contained in the LLMʼs response is extracted and used to replace previously
selected text in the userʼs editor.

How Sourcegraphʼs code AI platform powers Cody 9



8. The user continues the conversation
Even though weʼve reached the end of the interaction pictured above in the screenshot, it doesnʼt have
to be the end of the conversation between the user and Cody.

The user can ask follow-up questions, for example. In that case, Cody would then include everything
that has previously been said – the userʼs questions and Codyʼs answers – in the context when
answering the last question.

Or the user could reset the conversation, start a new one, use Cody in a different mode, or switch to an
older conversation. One question/answer dialogue might just be one of many interactions a user has
with Cody throughout their day.

Letʼs now take a look at the role of Sourcegraphʼs code AI platform in this interaction.

The unique power of Sourcegraphʼs code AI platform

The problem of context
Current LLMs, such as GPT-4 or Claude, are trained on vast amounts of data. Some say that theyʼre
trained on all of the internetʼs text, which is probably only a slight exaggeration, since the training data
consists of incredible amounts of publicly available data – websites, forums, open source code,
comments, social media posts, etc.

But they were not trained on a userʼs private code. So while LLMs know about open source code and a
lot of things about code and programming in general, they donʼt know about code thatʼs most
important to a user – their code.

To illustrate, hereʼs me asking Anthropicʼs Claude about code in the open-source database Redis:

How Sourcegraphʼs code AI platform powers Cody 10



And indeed, that is a snippet of code from Redis that was probably included in the LLMs training data.
You can see it here.

If I ask Claude about my own code, which is not open source, it apologizes because it doesnʼt know
about it:

But even if these LLMs were trained on my code, their knowledge of it would quickly become outdated,
since code is constantly being changed. As a matter of fact, that snippet of code from Redis above is
nowhere to be found in the current revision of Redis, since it has been refactored away – months a�er
being included in Claudeʼs training data.

How Sourcegraphʼs code AI platform powers Cody 11

https://sourcegraph.com/github.com/redis/redis@9e4fb96/-/blob/src/t_string.c?L95


Training on a particular codebase would not only be very costly but also worthless a�er your code has
changed.

Another option is to fine-tune an LLM, which requires collecting custom data and using it to re-train the
model, making it aware of more data than contained in its initial training data set. That is only slightly
more feasible. Collecting, sanitizing, labeling, evaluating training data and re-training an LLM is easier
said than done for companies that donʼt have experience training LLMs.

One could also consider sending their whole codebase to the LLM along with every request. Context
windows are becoming bigger and bigger (GPT4ʼs context window allows for 32k tokens, while the
newest version of Claude allows for 100k), but codebases today contain millions and millions of lines
of code – hard to fit into even the biggest of all context windows. But for argumentʼs sake, letʼs say the
window is big enough to contain your whole million line codebase: it would have to be sent along with
every request to the LLM – thatʼs slow on one end because the data needs to be transferred over the
network(s), expensive because LLM providers charge by used tokens, and slow on the other end
because the LLM now has to read a million lines of code before it can reply.

That leaves us with the solution presented in Cheating is All You Need: hand a “cheat sheet” to the LLM
that contains just enough (and just the right) information to answer questions about your codebase.

Finding the right context means finding the right code
The context mentioned above, local context and codebase context, is the cheat sheet that Cody hands
to the LLM. Putting together the right cheat sheet means finding the right code for a userʼs question.

Luckily, the Code Search functionality on top of Sourcegraphʼs code AI platform was built and refined
for over a decade to make exactly this easier: finding the right code.

Itʼs Codyʼs solution to LLMs not knowing about an organizationʼs code: the LLM doesnʼt need to know
about the code. Instead the code AI platform knows the code and allows Cody to find the most
relevant code for a given instruction.

Sourcegraphʼs code AI platformmakes Cody universal
Finding the right code within a small- to medium-sized project with 10s of thousands of lines of code
(say, expressjs, which has around 15k lines of JavaScript code), might still be possible for a single user
to do themselves (using tools such as ripgrep, grep, find, …), but finding the right code inside a
companyʼs codebase, across multiple code hosts, in 100s of thousands of lines of code? Thatʼs a
challenge of a different magnitude, a challenge that Sourcegraphʼs code AI platform was specifically
designed for.

How Sourcegraphʼs code AI platform powers Cody 12

https://about.sourcegraph.com/blog/cheating-is-all-you-need
https://github.com/expressjs/express


Sourcegraphʼs code AI platform allows Cody to find code across multiple code hosts, in hundreds of
thousands of repositories, in different languages – it makes Cody universal: wherever your code lives,
Cody can retrieve it and use it to gather the right context to send to the LLM.

Itʼs not just code either: Cody can use the code AI platform to find documentation, configuration files,
and metadata to compile.

In the future, the code AI platform will provide even more and better functionality to Cody that allows
it to gather the best possible context for a given user interaction.

Cody & Sourcegraphʼs code AI platform in the future

Integration with the code graph
As of June 8, 2023, Cody uses Sourcegraphʼs code AI platform to find (via embeddings search) and
retrieve files. The code graph – created with SCIP indexers – is untouched.

By leveraging the code graph, Cody will provide better context to the LLMs. In
we can see how the ability to walk along the code graph allows Cody toWhy use code graph data

not only find files that are semantically related to a userʼs query but find specific functions, variables,
modules and other code structures that are related to a specific bit of code.

This approach matches a sentiment on the future direction of so�ware built on top of LLMs: instead of
making the models themselves bigger and bigger, or even training custom models, improve the output
from LLMs in a more feasible way by giving the LLM access to tools, such as calculators, code
interpreters, or search engines. The code graph provided by the code AI platform is a tool that Cody
can use to find more relevant context.

For example, using the code graph Cody could retrieve all the callers of the function a user has a
question about. The reply to “How is this function used?” can be improved by looking at how it
actually is used, i.e. putting all the call sites into the context thatʼs sent to the LLM.

Using the code graph, Cody could reply to a userʼs request to find “our most-used React component”
by walking the graph and determining which component is the most-used one, i.e. which component
is actually imported and called the most o�en in other components.

When the user asks whether a given function needs tests, Cody will be able to check whether that
function is called within test files.

How Sourcegraphʼs code AI platform powers Cody 13

https://docs.google.com/document/d/14Gb8mXJr16Ywp12OlGDz-igtw1BjZL17bSaQgeW_GUU/edit#heading=h.xtcjt6jf2lzi
https://about.sourcegraph.com/blog/announcing-scip
https://twitter.com/simonw/status/1659409104799137793


Codyʼs integration with the code AI platformʼs code graph is coming soon.

Data from external sources
While Big Code is only getting bigger, a lot of possibly relevant context resides far from a companyʼs
code and most likely will never be managed in repositories:

● code reviews on code hosts
● tickets in issue trackers
● documentation in wikis
● historical data in version control systems
● performance data and error reports in SaaS applications
● organizational and ownership data in company directories
● internal Q&A boards

All of them contain information that helps developers understand and write code. Soon Cody will be
able to access these external data sources and use them to gather relevant context.

A question such as “who owns this code and why?” might be answered by Cody a�er it looked at the
ownership information of the code, its version control history, and consulted the decision log in the
company-internal wiki.

If the user asks Cody what the most fragile bit of code in a given module is, it wonʼt just be able to
check whether there are enough tests. It will also be able to check with the companyʼs APM tool to find
out which line produced the most panics in production.

Context, as we say, is everything. With Sourcegraphʼs code AI platform, Cody can turn nearly
everything into context.

External data plugins will soon be available to Cody.

Cody, everywhere
Today, Cody lives in a userʼs editor, close to where code is being written, keeping developers in the
flow and the inner loop running. It also lives in Sourcegraphʼs code search UI, which is where
developers go to find answers to questions they have about code.

There are many more places though in which someone might have a question about code or needs to
understand how a given snippet works or can be extended:

How Sourcegraphʼs code AI platform powers Cody 14

https://about.sourcegraph.com/big-code/big-code-in-ai-era
https://docs.sourcegraph.com/own
https://about.sourcegraph.com/blog/developer-productivity-thoughts


● in code reviews that happen on the code host
● in the browser when looking at documentation
● in the wiki when writing documentation
● in Slack when replying to a colleague
● …

The vision is that Cody will be available in all of these places and more, everywhere a user might need
assistance trying to understand, find, or write code.

Since Sourcegraphʼs code AI platform is already integrated into review tools on code hosts via a
browser extension and with more and more data integrations for Cody on the horizon, this is a natural
next step.

Improved ranking
As we saw above, one of the key differentiators of Cody is that it builds up the right context for a given
user interaction – the context should include files and documents that are relevant to the interaction.
Implicit in that is the idea that some files are more relevant than others; there is a ranking. Thatʼs
where Sourcegraphʼs decade-long experience building Code Search can help Cody.

How much better will the context that Cody gathers be if we improve how we determine which files are
relevant and which arenʼt? Our bet: a lot better. So far, the embeddings search that Cody uses doesnʼt
take a lot of signals into its ranking. In the future we want to incorporate information from the code
graph, from ownership data, from external data and other sources into ranking to return only the truly
relevant files to a userʼs query.

Improved ranking also means we can cut out the files that are not relevant, which shrinks the amount
of data thatʼs being sent to the LLM, reducing costs and data egress, and making interactions faster.

Sourcegraph embeddings: no dependency on OpenAI and better-suited
models
Today, Sourcegraphʼs code AI platform creates embeddings using OpenAIʼs embeddings API. First
results of research show that the quality of embeddings can be improved a lot by using a different
model specifically selected for Sourcegraphʼs purpose of creating embeddings for code.

In the future, the code AI platform will be able to create embeddings on its own, without using
OpenAIʼs API and with a custom model, yielding not only better results but also reducing costs for
Sourcegraph and its customers. See this section in the Cody white paper on context for more details.

How Sourcegraphʼs code AI platform powers Cody 15

https://about.sourcegraph.com/whitepaper/cody-context-architecture.pdf#page=10

